
On the kinetics of nucleation and growth reactions
in inhomogeneous systems

Massimo Tomellini

Received: 25 June 2009 / Accepted: 23 October 2009 / Published online: 10 November 2009

� Springer Science+Business Media, LLC 2009

Abstract Nucleation and growth kinetics in systems with

a small degree of inhomogeneity are usually modeled

through the KJMA (Kolmogorov–Johnson–Mehl–Avrami)

theory, that is by using the local values of the nucleation and

growth rates which are proper to the region where the

transition takes place. In this study, a general expression for

the kinetics is derived which applies, in principle, to any

degree of inhomogeneity and conforms to previous

approaches. The model is employed to study, analytically,

first order corrections to the KJMA formula in the case of

simultaneous nucleation and interface-limited growth. It is

shown that under these circumstances, the nucleus shape is

a circle (two-dimensional) whose center is displaced with

respect to the point where the nucleation event occurs. The

displacement of the center and the radius of the nucleus are

both functions of time. The behavior of the Avrami expo-

nent and the impingement factor as a function of the frac-

tion of transformed volume is investigated and discussed.

Introduction

Reactions in the solid state may proceed by nucleation and

growth of the product phase. Typical examples include the

precipitation of a new phase from supersaturated solid

solution, crystallization of an amorphous system, allotropic

transformation, and the initial stage of the oxidation of

metal surfaces [1]. The kinetics of the phase transition play

an important role in materials science since they affect the

microscopic morphology of the sample and, consequently,

the mechanical properties of the material [2]. Both theo-

retical and experimental studies have recently been per-

formed, aimed at an exhaustive characterization of the

reactions by studying both the kinetics of the transformed

volume and the nucleus size distribution function [3–7].

As far as the kinetics are concerned, that is also the topic

of the present contribution, they are usually modeled by

means of the celebrated Kolmogorov–Johonson–Mehl–

Avrami (KJMA) theory [8–11] which applies under spe-

cific conditions, the most well-known of which concern the

spatial distribution of the nuclei that is required to be

random. It is just this assumption that makes it possible to

solve the kinetic problem in closed form and provides us

with an equation particularly manageable for describing

experimental data. Nevertheless, several models have been

developed for investigating the effect, on the phase tran-

sition kinetics, of the breakdown of the hypothesis on

which the KJMA theory rests. Specifically, these kinetics

account for the non-random distribution of the nuclei

[12–14], the shielding effect in anisotropic growth [15–19],

the parabolic growth law [14, 20–22], the finite size of the

system where the transition takes place [23, 24], the finite

number of nuclei [25], and the position dependent nucle-

ation rate [26]. Moreover, it is worth noting that most of

these kinetic models have been formulated for systems that

are translationally invariant.

With regard to the phase transition kinetics, in inho-

mogeneous samples the nucleation and growth rates are

expected to depend on position within the system. This can

be ascribed to either a composition or a temperature gra-

dient throughout the specimen. This situation may occur,

for instance, when an alloy is quenched at the aging tem-

perature leading to precipitation phenomena or in alloying

caused by surface catalytic reactions followed by atom
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diffusion. In the former case, excess vacancies diffuse to

lattice defects where they annihilate. Since the flux of

vacancies is coupled to the flux of the alloy elements [1],

the rate of the transformation is a function of the position-

dependent vacancy concentration.

To take an example, surface catalytic reactions coupled

with bulk diffusion processes take place in the complex

process called ‘‘metal dusting’’ [27]. To be specific, metal

dusting occurs in a carburizing atmosphere, for example

one containing hydrocarbons, where the metal surface

catalyzes the hydrocarbon decomposition and C atom for-

mation. Then C atoms diffuse into the metal, leading to the

formation of a metal–carbon solid solution. In the case of

iron, this may imply oversaturation of the Fe–C solid

solution and, consequently, the nucleation, and growth of

cementite [27]. Under these circumstances, due to the

concentration profile of C in the alloy, the phase transfor-

mation takes place in an inhomogeneous medium. This

means that the nucleation and growth rates depend on both

position and time and this could lead to anisotropic growth

of the nuclei. In turn, this may imply the occurrence of the

above mentioned shielding and overgrowth phenomena.

The effect of inhomogeneity on the kinetics of phase

transition has been studied, through a phenomenological

kinetic equation, by means of the fitting parameter called

the ‘‘impingement factor’’ [28, 29]. In reference [30], the

effect of inhomogeneity has also been investigated by

assuming the KJMA kinetics to hold, locally, and by

computing the overall kinetics by averaging the contribu-

tions of all volume elements of the sample. Furthermore,

from the kinetics, the behavior of the Avrami exponent can

be determined as a function of the fraction of transformed

volume [28, 30].

In this work, a study is presented of the kinetics of first

order phase transitions, ruled by nucleation and growth, in

inhomogeneous systems. The inhomogeneity of the

nucleation and growth processes is thought to be linked to a

time independent concentration gradient. The modeling is

more general than those above quoted, since it does not rest

on the computation of the ‘‘local’’ transformed volume by

means of the KJMA formula. In fact, in the present

approach, the effect of the inhomogeneity is taken into

account at the level of the statistical computation required

to solve the kinetic problem. The general formulation is

further employed to study the kinetics in the case of site

saturation and interface-limited growth and, with it, the

behavior of both the Avrami exponent and the impinge-

ment parameter.

The article is divided as follows. In ‘‘Kinetics of the

transformed volume’’ section the expression for the trans-

formed volume is derived by using the concept of extended

volume. ‘‘Application of the kinetic model’’ section is

devoted to studying the growth law when atom attachment

at the nucleus interface is rate determining. In ‘‘Kinetics of

the transformed volume: site saturation’’ section the

transformed volume and the Avrami exponent are com-

puted in the model case of simultaneous nucleation for

two- and three-dimensional growths.

Kinetics of the transformed volume

A general expression for the kinetics of transformed vol-

umes in phase transformation, taking place in non-uniform

systems where nucleation centers are distributed at random,

has been reported by Avrami in reference [31]. In the

present contribution, a different approach to the same

problem is presented which gives the solution in terms of

nucleation rate and nucleus growth law. It will also be

shown that, through a suitable change of variables, the

present kinetics reduce to Avrami’s formula.

Let us consider a region of the system where, owing to a

concentration gradient, the rates of nucleation and growth

depend on position. Moreover, the spatial distribution of

nuclei is random. In the following we denote with I(s, R)

the nucleation rate at time s and at the position stated

by the vector R, and with dr
dt ¼ Gðr;RÞ the growth rate

along the r̂ direction, where r is the modulus of the vector

pointing to the cluster surface. As far as the time depen-

dence of the cluster size is concerned, it is obtained from

the growth rate as

t � s ¼
Zr

0

1

Gðr0; r̂;RÞdr0; ð1Þ

where s is the time at which the nucleus started growing

and R is taken as constant. Equation 1 gives the nucleus

growth law r � rðt � s; r̂;RÞ for a nucleus centred at R.

The statistical problem one wants to solve is the fol-

lowing: given a generic point of the system, say at R0, what

is the probability that this point be transformed at time t by

the new phase. In turn, this probability is just equal to the

fraction of transformed volume at R0, n(R0, t). It is worth

noting that the dependence of the nucleation and growth

rates on position is brought about, for instance, by the non-

uniform concentration of the chemical components that

rule the reaction.

By denoting with dP(s, t’, R, R0) the probability that the

point is transformed in the time interval dt0 around t0 by the

nucleus born in the time interval ds around s and in

the volume element dR around R, one gets

dPðs; t0;R;R0Þ ¼ 1� nðR0; t
0Þ½ �Iðs;RÞdsdwrnGð�r;RÞdt0;

ð2Þ

where n ¼ D� 1, with D being the space dimension and

dw = dh and dw = sinhd/dh for D = 2 and D = 3,
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respectively. In Eq. 2 r = R - R0 and the point,

identified by the vector -r, lies on the cluster surface

(see Fig. 1). In this respect, it is important to emphasize

that in Eq. 2 G and R have to be considered functions of

t0 - s and w. In fact, G2Dð�r;RÞ � G2Dðr; pþ h;RÞ and

G3Dð�r;RÞ � G3Dðr; pþ /;p� h;RÞ, expressions that

are rewritten in a more concise form as Gð�r;RÞ �
Gðr;w0;RÞ where w0 � w0ðwÞ is a function of w.

Therefore, the integration of the growth rate leads to

t � s ¼
Zr

0

1

Gðr0;w0;RÞdr0: ð3Þ

As above, in Eq. 3 R is independent of the integration

variable. According to Eq. 3 one gets the functions r �
gðt � s;w0;RÞ ¼ gðt � s;w0; r þR0Þ ¼ ~gðt � s;w0; r;w;R0Þ
namely an implicit equation for r that can be formally

rewritten as

r � rðt � s;w;R0Þ: ð4Þ

The physical meaning of this equation is straightforward:

it is the distance that a growing nucleus located at r ? R0

covers along the direction w0 � w0ðwÞ, in the time interval

t - s, s being the birth time of the nucleus.

In Eq. 1 the term ½1� nðt0;R0Þ� is the probability that

the generic point is untransformed at time t0 and the

nucleation rate is also comprehensive of the contribution of

the phantom nuclei. Clearly, Eq. 1 holds true provided that

the phantom overgrowth and the shielding process are not

allowed [18, 32]. Furthermore, in the case of anisotropic

growth, as considered here, the shielding among clusters

does not occur provided the orientation is the same for all

nuclei [32].

Since the probability that the generic point be trans-

formed in the time interval dt0 around t0 is equal to dn(t0,
R0), from Eq. 2 it follows that

dnðt0;R0Þ
dt0

¼ 1� nðt0;R0Þ½ �
Z

Dw

dw
Zt0

0

Iðs;RÞrnGð�r;RÞds

ð5Þ

or, by integration,

ln 1� nðt;R0Þ½ � ¼ �
Z

Dw

dw
Z t

0

dt0
Zt0

0

Iðs;RÞrnGð�r;RÞds;

ð6Þ

where Dw denotes the integration domain of the angular

variables. It is worth noting that the integrand of Eq. 6 is a

function of the integration variables. In fact, in Eq. 6

R = r ? R0, Gð�r;RÞ � Gðr;w0;RÞ and the nucleus size

is given by r � rðt0 � s;w;R0Þ (Eq. 4). Equation 6 gives

the formal solution of the kinetics for transitions occurring

in inhomogeneous systems provided that the phantom

overgrowth and the shielding phenomenon are both pre-

cluded. Equation 6 is similar to the KJMA formula where

the multiple-integral in the second member can be thought

as the position-dependent ‘‘extended volume’’.

It is possible to show that Eq. 6 is, in fact, compatible

with Avrami’s solution [31]. By changing the integration

variable from s to r and using the identity ds
dr ¼ �1

G (Eq. 1),

Eq. 6 becomes

ln 1� nðt;R0Þ½ �

¼ �
Z

Dw

dw
Z t

0

dt0
Zrðt0;w;R0Þ

0

Iðsðr; t0;w;R0Þ; rþ R0Þrndr:

ð7Þ

In Eq. 7 the nucleation time, s, which enters the

nucleation rate, has been expressed in terms of r, t0 and

w through the inversion of r � rðt0 � s;w;R0Þ. Also, the

extreme of integration, r � rðt0;w;R0Þ, is the distance—

from the generic point (P in Fig. 1)—of a nucleus which

started growing at s = 0 and transforms the point P at time

t0. It is the maximum distance at which a nucleus capable of

growing through R0 can lie. Next, by exchanging the order

of integration between the r and the t0 variables the kinetics

becomes (see also Fig. 2a, b)

ln 1� nðt;R0Þ½ �

¼ �
Z

Dw

dw
Zrðt;w;R0Þ

0

rndr

Z t

t0ðr;w;R0Þ

Iðsðr; t0;w;R0Þ; rþR0Þdt0;

ð8Þ

Fig. 1 Reference frames employed in the computation developed in

‘‘Kinetics of the transformed volume’’. The nucleus center, O (black
symbol), is located at R and the generic point, P (grey symbol), at R0.

The local reference frame is centered at O
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where t0 ¼ t0ðr;w;R0Þ is obtained by inverting r � rðt0;w;
R0Þ. The last integral in Eq. 8 can be further elaborated by

noting that at constant r, dt0 = ds. Accordingly, by

changing the variable, Eq. 8 eventually becomes

ln 1� nðt;R0Þ½ � ¼ �
Z

Dw

dw
Z�r

0

rndr

Z�s

0

Iðs; rþ R0Þds;

ð9aÞ

where �s � sðt; r;w;R0Þ is the birth time of a nucleus which

transforms the point at running time t and �r ¼ rðt;w;R0Þ
defines the boundary of the region of influence for the point

at R0 (Fig. 2c).

The meaning of Eq. 9a is the following: the term

N½�s; r�dr ¼
Z�s

0

Iðs; rþ R0Þds

0
@

1
Adr ð9bÞ

is equal to the number of nuclei (phantom included) within

dr which are capable of transforming the generic point up

to time t. Integration over dr will eventually give the total

number of nuclei which have grown through that point.

Inserting Eq. 9b into Eq. 9a gives the solution of reference

[31].

Application of the kinetic model

Growth law

The simplest application of the kinetics concerns two-

dimensional growth in the presence of an unidirectional

concentration gradient along, say, the x-axis. The concen-

tration of the species is uniform in the y direction. Here, we

deal with interface-limited growth where the growth rate is

proportional to the concentration of the species at the

interface. For the sake of simplicity, the growth is ruled by

a single component of the system. In addition, we first

discuss the case in which the shape of the nucleus is dic-

tated by the rate of atom attachment at the nucleus surface,

i.e., redistribution of matter in the nucleus is kinetically

inhibited (type-I mechanism). On the contrary, when atom

mobility at the periphery of the nucleus is high, the nucleus

shape conforms to the criterion of the energy minimum and

becomes independent of growth rate (type-II mechanism).

This is the case, for example, of the spherical nucleus for

which shape the surface energy term minimizes. Under

these circumstances, the computation of the growth law is

expected to be simpler for the shape of the nucleus is given

a priori. It will be shown, however, that with a small degree

of inhomogeneity the two models lead to similar results.

In the absence of matter redistribution the rate equation

for the nucleus growth reads1

Fig. 2 Integration domains of the integrals defined in ‘‘Kinetics of the

transformed volume’’. Panels a, b, and c refer to Eqs. 7, 8, and 9a,

respectively. In panels a and b a linear growth law, rðt0;w;R0Þ, is shown

for a nucleus that starts growing at time s = 0. The arrows indicate the

(r; t0) integration domains of Eq. 7 (panel a) and Eq. 8 (panel b). In

panel (c) the growth law, rðt0 � s;w;R0Þ is shown as a function of t0 and

for different values of s. Specifically, �sðri;w; tÞ (i = 1, 2; in the figure

the w variable has been omitted) is the birth time of a nucleus, at ri,

which transforms the point at running time t. The solid lines are the

functions rðt0 � �s;w;R0Þ. In particular, the red line refers to the function

rðt0;w;R0Þ that gives the radius of influence �r ¼ rðt;w;R0Þ. In Eq. 9a

the s variable spans the range marked by the arrow. (Color figure online)

1 Strictly speaking the evolution of the local curvature of the nucleus,

under interface-limited growth, is governed by the equation d<
dt ¼

o<
ot þ o<

oxtx � acðxÞ where tx ¼ d<
dt n̂x̂ is the local growth rate along x

and n̂ is the normal to the nucleus surface. Combining these equations

one gets o<
ot ¼ acðxÞ 1þ o<

ox
oy=oxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðoy=oxÞ2
p

� �
: Equation 10 holds provided

o<=ox� 1: It can be proved that this condition is fulfilled in the case

r0/k � 1 here considered.
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o<ðx; tÞ
ot

ffi acðxÞ ð10Þ

where <(t, x) is the local curvature of the nucleus at time t,

c(x) is the species concentration, a = am/q with a and m
being the jump distance and hopping frequency,

respectively, and q is the density of the nucleus. In

addition, by employing Cartesian coordinates, the local

curvature of the nucleus is linked to the nucleus shape

through the expression

<ðt; xÞ ¼ 1þ g2ð Þ3=2

og
ox

�� �� ð11Þ

with g ¼ oyðx;tÞ
ox and y(x, t) being the equation of the nucleus

boundary at time t. It is worth noting that since the char-

acteristic length over which the concentration changes is

usually shorter than the mean size of the nuclei, approxi-

mations can be employed. In particular for the zero-order

approximation cðxÞ ffi cðx0Þ, where x0 is the coordinate of

the nucleus center, Eq. 11 gives a circle. One gets <ðtÞ ¼
rðt; x0Þ ¼ atcðx0Þ þ r� where at t = 0 the nucleus shape is

a circle of radius r�, namely the critical radius. In the

following, we go beyond the zero-order approximation by

including first order corrections to the concentration profile

around the nucleus.

In the mathematical computations that follow spatial

coordinates are measured with respect to the reference

frame located at the nucleus center: x = x0 = 0,

y = y0 = 0. Since c = c(x) the growth is symmetric with

respect to the x-axis. As a consequence, the intersection

points between the nucleus boundary and the x-axis,

x ¼ �xðtÞ, satisfy the equation

d�xðtÞ
dt
¼ �acð�xÞ; ð12Þ

where the positive and negative signs refer to �x [ 0 and

�x\0, respectively. As anticipated above, we take

advantage of the fact that the length scale over which the

concentration changes is much longer than the mean

nucleus size. On this basis, a nucleus located at x0 will

grow under a nearly constant concentration gradient as

given by the first order expansion

cðxÞ ffi c0 1� x

k

� �
; ð13Þ

where k ¼ � cðx0Þ
c0ðx0Þ and c0 = c(x0). In Eq. 13 k, that is a

function of x0, is much longer than the mean size of the

nuclei. In the case dc
dx

��
x0
¼ c0ðx0Þ\0 the characteristic

length, k, is greater than zero. The zero-order

approximation is eventually recovered in the limit

k!1. For �x [ 0 Eq. 12 gives

c0as�x ¼ �k ln 1� �x

k

� �
þ k ln 1� r�

k

� �
; ð14Þ

where s�x is the time at which the nucleus boundary crosses

the point y ¼ 0; x ¼ �x and, as already said, we set x0 = 0.

For �x\0 the second member of Eq. 14 has to be multiplied

by -1. Next we use this result to compute the local

curvature <ðt; xÞ by integrating Eq. 10 at constant x, where

the time variable spans the range sx 7 t. The solution is

<ðt; xÞ � <ðsx; xÞ ¼ acðxÞðt � sxÞ: ð15Þ

Using Eqs. 13, 14 and assuming <ðsx; xÞ � x, Eq. 15

becomes (for x [ 0)

<ðt; xÞ ¼ xþ r0ðtÞ 1� x

k

� �
þ k ln 1� x

k

� �
� x ln 1� x

k

� �
;

ð16aÞ

where r0(t) = ac0t and the contribution due to the critical

size has been disregarded. In a similar fashion, for x \ 0

one obtains

<ðt; xÞ ¼ �xþ r0ðtÞ 1� x

k

� �
� k ln 1� x

k

� �

þ x ln 1� x

k

� �
: ð16bÞ

As anticipated, the condition
r0ðtÞ

k � 1 is considered and

this justifies a series expansion in terms of x/k obtaining

<ðt; xÞ ffi r0ðtÞ �
r0ðtÞ

k
x� x2

2r0ðtÞ

� �
x [ 0ð Þ ð16cÞ

and

<ðt; xÞ ffi r0ðtÞ �
r0ðtÞ

k
xþ x2

2r0ðtÞ

� �
x\0ð Þ: ð16dÞ

We are now in a position to determine the shape of the

nucleus. Equation 11 is solved for g according to

g

1þ g2ð Þ1=2
¼ �f ð17aÞ

that implies

dy

dx
¼ � fffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f 2
p ; ð17bÞ

where

f ðx; tÞ ¼
Zx

0

1

<ðw; tÞdwþ K0 ð17cÞ

with K0 as the integration constant (time dependent). By

employing Eqs. 16c, 16d into Eq. 17c, and retaining terms

up to the first order in k0�1 ¼ r0ðtÞ=k, one gets

f ðx; tÞ ffi x0 þ 1

2k0
x02 � 1

6k0
x03 þ K0 x [ 0ð Þ ð18aÞ
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f ðx; tÞ ffi x0 þ 1

2k0
x02 þ 1

6k0
x03 þ K0 x\0ð Þ ð18bÞ

where x0 ¼ x=r0ðtÞ and the expansion 1þ xð Þ�1ffi 1� x

was exploited. In addition, using Eq. 17c the solution of

Eq. 17b can be recast in the form

y ¼ � K1 � <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

p
þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f 2
p d<

df
df

� �
; ð19Þ

where K1 is the integration constant and <(x(f, t), t) is

attained by inverting the f(x, t) function with respect to x.

Moreover, since the derivative d<
df scales as d<

df � r0

k0
and y is

nil at f = ± 1, it is possible to show that also K1 � r0/k0

and the leading term of Eq. 19 reads

y0 ffi �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

p
; ð20Þ

where y0 = y/r0(t) and f(x, t) is given by Eqs. 18a, 18b.

However, to evaluate Eq. 20 the integration constant, K0,

has to be estimated. This is accomplished by exploiting the

conditions <ð�xÞ ¼ ��x and f ð�xÞ ¼ �1, that is a system of

equations, where the minus sign refers to the case �x\0.

Specifically, by retaining terms up to the first order in k0�1

the solutions of the second order equations <ð�xÞ ¼ ��x read

�x0þ ¼ 1� 1
2
k0�1 and �x0� ¼ � 1þ 1

2
k0�1

	 

with �x0 ¼ �x=r0.

Moreover, the leading term of the expression f ð�xþÞ ¼ 1

eventually provides K0 ffi k0�1=6.

The shape of the nucleus, as given through Eq. 20, has

been displayed in Fig. 3 for several values of the k0

parameter. As Fig. 3 shows, the nucleus is more aniso-

tropic the smaller the k0. In fact, for k0[ 0 the growth is

faster the smaller the x-coordinate of the nucleus boundary.

Let us approximate Eq. 20 according to

yðx; tÞ
r0ðtÞ

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

r0ðtÞ
þ r0ðtÞ

2k

� �2
s

ð21Þ

namely, the nucleus shape is a circle of radius r0(t). The

center of the nucleus is located at x = y = 0, whereas the

coordinates of the center of the circle are x ¼ �c
r2

0

k , y = 0,

where c = 1/2. Besides for k[ 0 the circle center is

located at x \ 0, since the growth is faster at x \ 0. These

‘‘displaced circles’’ are shown in Fig. 4 where the

approximate solution, Eq. 20, has also been reported for

comparison. As one can see, the displaced circles represent

a good description of the approximate solution of Eq. 20.

Under these circumstances the mathematical formulation

of the kinetics is simpler and makes it possible to find an

analytical solution of the kinetics as discussed in ‘‘Kinetics

of the transformed volume’’. In addition, Eq. 21 is also

consistent with the type-II growth mechanism for spherical

nuclei.

Let us now consider this issue in more detail. For the

type II mechanism, the computation reduces to the

determination of both radius (r0(t)) and center of mass of

the nucleus (dxN) at running time t. These are estimated as

r0ðtÞ ffi �xþ��x�
2

and dxN ffi �xþþ�x�
2

, where �xþ and �x� are the

Fig. 3 Nucleus shape in the case of interface-limited growth (Eqs. 18a,

18b, 20) for several values of the 1/k0 = r0/k parameter. r0/k = 0

(black); r0/k = 0.05 (blue); r0/k = 0.1 (red); r0/k = 0.2 (green) and

r0/k = 0.25 (grey). The larger the r0/k the more negative is the

x-coordinate of the center of mass of the nucleus. (Color figure online)

Fig. 4 Comparison between the shape predicted by Eqs. 18a, 18b, 20

(solid line) and the displaced circle given by the approximate Eq. 21

(dashed line). The comparison is displayed for r0/k = 0.1 (blue)

and r0/k = 0.25 (red). The larger the r0/k the more negative is the

x-coordinate of the center of mass of the nucleus. This holds for both

nuclei depicted as dashed and solid lines. (Color figure online)
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positive and negative solutions of Eq. 12 that hold in

the local reference frame of the nucleus. By employing

Eq. 14 for �xþ (and a similar equation for �x�) one obtains

r0ðtÞ ffi ðk� r�Þ sinhðc0at=kÞ and dxN ffi k½1� ð1� r�=kÞ
coshðc0at=kÞ� which reduces, in the limit c0at/k � 1, to

the expressions entering Eq. 21.

Before concluding this section it is worth pointing out that

in the case of anisotropic nuclei, the phantom overgrowth is,

in general, unavoidable. The conditions, i.e., location and

nucleation time, for which this phenomenon occurs, can

easily be studied provided the nucleus shape is known. Also,

for the unidirectional concentration gradient considered

here, and in the limit of a circular nucleus (as given by

Eq. 21) only the phantom nuclei located at x [ 0 could

overtake the actual nucleus. To be specific, let us consider an

actual nucleus at x = x0 = 0, y = y0 = 0 which starts

growing at time t = s0 and a phantom nucleus located at

x = x1, y = y1 which starts growing at time t = s1 [ s0.

We recall that the x-coordinates of the center of the circles of

the actual (a) and phantom (p) nucleus are (Eq. 21) CaðtÞ ¼
�cr2

aðtÞ
k and CpðtÞ ¼ �c

r2
pðtÞ
k , respectively, where raðtÞ ¼

r0ðt � s0; x0Þ ¼ acðx0Þðt � s0Þ and rpðtÞ ¼ r0ðt � s1; x1Þ ¼
acðx1Þðt � s1Þ. Therefore, the overgrowth phenomenon

requires the following inequalities to be fulfilled:

r2
aðs1Þ[ y2

1 þ x1 � Caðs1Þð Þ2 ð22aÞ

ðrað�tÞ � rpð�tÞÞ2\ðOO0Þ2 ð22bÞ

where ðOO0Þ2 ¼ x1 þ Cpð�tÞ � Cað�tÞ
	 
2þy2

1. Inequalities (a)

and (b) give, respectively, the conditions for the formation

of a phantom and for the overgrowth (see also Fig. 5). By

retaining terms up to the first order in k0�1, Eqs. 22a, 22b

lead to

2x1 Caðs1Þ þ Cpð�tÞ � Cað�tÞ
	 


[ rað�tÞ � rpð�tÞ
	 
2

� r2
aðs1 � s0Þ ffi 0; ð23Þ

which is satisfied for x1 [ 0 since �t [ s1 [ s0 and the

condition cðx0Þ ffi cðx1Þ can be assumed to hold.

Kinetics of the transformed volume: site saturation

The eventual aim of this section is to study the kinetics of

nucleation and growth reactions in the case of interface-

limited growth and simultaneous nucleation (or site satu-

ration), where all nuclei start growing at t = 0. Nucleus

shape is described by Eq. 21 that holds true provided

k0�1\1. Accordingly, for two-dimensional growth the

kinetics of the transformed volume reads

ln 1� nðt;X0Þ½ � ¼ �N

Z2p

0

dh
Z�rðh;t;X0Þ

0

rdr ¼ �N

2

Z2p

0

�r2dh;

ð24Þ

where X0 is the x-component of R0 and the density of

nuclei, N, is taken as constant.

From Eq. 21 one gets

r2 ffi r2
0 þ 2xdxN ; ð25Þ

where r0 ¼ r0ðt � s; xNÞ ¼ acðxNÞðt � sÞ and dxN ¼ �c
r2

0

k
is the coordinate of the circle center in the nucleus

reference frame. By recalling that x = -r cosh Eq. 25

becomes

r2 ffi r2
0 þ 2rc

r2
0

kðxNÞ
cos h; ð26aÞ

where the coordinate of the nucleus center is (see also

Fig. 1)

xN ¼ X0 þ r cos h: ð26bÞ

The extreme of integration, �r, is therefore obtained by

solving the system of Eqs. 26a, 26b in the unknown r at

s = 0, i.e., for r0 = ac(xN)t.

In order to obtain a manageable analytical solution of

the kinetics, let us consider a specific expression for the

concentration profile according to c(x) � e-x/k where k is

constant. Under this circumstance in Eq. 26a, kðxNÞ ¼
� cðxN Þ

c0ðxN Þ � k. Furthermore, by Taylor expanding the solution

of the second order Equation (Eq. 26a) in k0�1 and using

cðxNÞ ffi cðX0Þ 1� r cos h
k

	 

one gets

Fig. 5 Sketch of the overgrowth process in the case of anisotropic

growth. According to Eq. 21 nuclei are ‘‘displaced circles’’. In the

figure, a and p stand for the nucleation centers of the actual and

phantom nuclei, respectively. The birth time of the phantom is s1. O

and O0 are, respectively, the circle centers of the actual and of the

phantom nuclei at time �t. O00 is the circle center of the actual nucleus

at time s1 (s1\�t). The phantom overtakes the actual nucleus at time �t

J Mater Sci (2010) 45:733–743 739

123



�r ffi �r0 1� �r

k
cos hþ c

�r0

k
cos h

� �
; ð27aÞ

where �r0 ¼ acðX0Þt and only first order terms in 1/k have

been retained. Therefore,

�r ffi �r0 1þ c
�r0

k
cos h

� �
1þ �r0

k
cos h

� ��1

ð27bÞ

which implies, �r2 ffi �r2
0 1þ 2c�r0

k cos h
� �

1þ 2�r0

k cos h
� ��1

. By

evaluating the integral of Eq. 24, the local kinetics becomes

ln 1� nðt;X0Þ½ � ¼ �neðt;X0Þ; ð28aÞ

with the local extended volume

neðt;X0Þ ¼ Np�r2
0ðtÞ cþ ð1� cÞ 1� 2�r0ðtÞ

k

� �2
 !�1=2

2
4

3
5:
ð28bÞ

Alternatively, Eq. 28b can be rewritten as

neðt;X0Þ ¼ �neðtÞ cþ ð1� cÞ 1� 4�neðtÞ
pNk2

� ��1=2
" #

ð28cÞ

where �neðtÞ ¼ Np�r2
0ðtÞ is the local extended volume in the

zero-order approximation (i.e., computed at the local

composition c(X0) and for k ? ?).

In analogy with the two-dimensional case, the compu-

tation above can also be applied to the three-dimensional

growth by conjecturing that, for a small degree of inho-

mogeneity, nuclei are ‘‘displaced spheres’’, with respect to

the nucleation center. The computation simplifies through a

suitable choice of the polar axis that is oriented parallel to

the concentration gradient. It is possible to show that

Eq. 27b holds for this case as well, and the local extended

volume becomes

neðt;X0Þ ¼ N
1

3

Z2p

0

d/
Z1

�1

�r3d cos h

ffi 2p
3

N�r3
0

Z1

�1

1þ 3c
�r0

k
cos h

� �
1þ 3

�r0

k
cos h

� ��1

d cos h

¼
�ne

2

k
3�r0

ð1� cÞ ln 1þ 3�r0=k
1� 3�r0=k

� �
þ 2c

� �
; ð29Þ

where �ne ¼ 4p
3

N�r3
0. Also in this case, for k ? ?, Eq. 29

gives the KJMA formula at the local composition [29, 30]:

nðt;X0Þ ¼ 1� e�
�neðt;X0Þ. It is worth pointing out that the

whole transformed volume is obtained through the average

nðtÞ ¼ 1
h

R h
0

nðt;XÞdX, where h is the sample thickness

[26, 30].

The behavior of the local transformed fraction is shown

in Fig. 6a, b for two- and three-dimensional transitions,

respectively, as a function of the extended fraction, �ne, and

for several figures of C2D ¼ pNk2 (two-dimensional

growth) and C3D ¼ 4
3
pNk3 (three-dimensional growth). As

can be seen, the present approach predicts an enhancement

of the reaction rate when compared to that computed in the

zero-order approximation, namely for a homogeneous

system with composition just equal to the local value c(X0).

This result can be understood by noting that the dimen-

sionless extended volume is equal to the number of nuclei

which lie in the region encompassed by the �rðhÞ curve. For

two-dimensional growth this region is displayed in Fig. 7

for some values of k0�1 and its area is found to be greater

than p�r2
0.

Fig. 6 Kinetics of the transformed fraction for two-dimensional

(panel a) and three-dimensional (panel b) growths in the case of site

saturation. The kinetics is plotted as a function of the local extended

volume. In both panels the dashed line is the KJMA equation for the

(local) growth rate at the point where the transition is studied (R0).

Panel a C2D ¼ 20 (solid line), C2D ¼ 15 (dash-dotted line). Panel b
C3D ¼ 140 (long-dashed line); C3D ¼ 70 (dash-dotted line); C3D ¼
60 (solid line)
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The behavior of the Avrami exponent as a function of

the local transformed volume n(t, X0), is shown in Fig. 8a,

b. It is computed through the expression nðnÞ ¼ Dd ln ne

d ln ne

(D = 2, 3) that is found to be larger than 2 and 3 for the

two- and three-dimensional growths, respectively. In fact,

for linear growth of the nuclei and simultaneous nucleation

the KJMA formula gives Avrami’s exponents that are just

equal to D. It is worth noting that Avrami’s exponents

larger than 3 have been obtained from experimental data on

the crystallization of Fe33Zr67 alloy for 0.1 \ n\ 0.7 [30]

and of Zr80Ni20 alloy for 0.15 \ n\ 0.5 [33]. The anom-

alous behavior of the exponent has been ascribed, in ref-

erence [30], to the inhomogeneity of the sample.

A detailed study on the behavior of the Avrami exponent

in diffusion controlled growth of primary crystallization

has been presented in reference [34]. The modeling, which

refers to a homogeneous system, shows that this exponent

is a decreasing function of the fraction of transformed

volume and, moreover, it is suitable for interpreting

experimental data on the amorphous to crystalline transi-

tions in alloys. On the other hand, in the case of interface

controlled growth, experimental data of eutectic crystalli-

zation of alloys give Avrami’s exponents that are nearly

constant [35]. The present computation therefore indicates

that in a non-homogeneous system the Avarmi exponent

exhibits a behavior which, in principle, should be dis-

cernible from those typical of a homogeneous medium.

In order to describe experimental kinetics, a phenome-

nological equation has been proposed that includes, as

limiting case, the KJMA solution. In differential form the

equation reads

dn

d~n
¼ ð1� nÞj ð30aÞ

or, in integral form,

n ¼ 1� 1þ ðj� 1Þ~n
h i 1

1�j
; ð30bÞ

where ~n plays the role of extended volume and j is the

impingement parameter [29]. The KJMA formula is

obtained in the limit j = 1. In order to apply Eq. 30a to

the inhomogeneous case discussed so far, it is reasonable to

identify ~n with the value expected for a homogeneous

medium, and computed at the point where the transition

Fig. 8 Avrami’s exponent for two-dimensional (panel a) and three-

dimensional (panel b) growths. Panel a C2D ¼ 20 (solid line); C2D ¼
15 (dashed line). Panel b C3D ¼ 140 (dashed line); C3D ¼ 70 (dash-
dotted line); C3D ¼ 60 (solid line)

Fig. 7 Normalized radius of influence, �rðhÞ ¼ �rðhÞ=�r0, in the case of

two-dimensional transitions for 1=k0 ¼ 0:1 (solid line, red curve),

1=k0 ¼ 0:2 (solid line, blue curve). The circle �rðhÞ ¼ �r0, correspond-

ing to the homogeneous system (1=k0 ¼ 0), is shown as dashed line.

The smaller the k0 value the more the displacement of the curve from

the circle of radius �r0. The dimensionless extended area is equal to the

number of nuclei within the area encompassed by this curve. (Color

figure online)
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occurs, that is the �ne quantity. Furthermore, by using the

definition above on the dynamical Avrami’s exponent, n,

one gets

j ¼ 1þ lnðnneÞ � lnðD�neÞ
lnð1� nÞ : ð31Þ

The behavior of j is displayed in Fig. 9a, b as a function

of the local value of the transformed volume for several

values of k0. As can be seen the impingement factor is,

approximately, uniform on n, and it is lower than unity in

the entire range of n. The value of the parameter 1/k0, is

reported in Fig. 10 as a function of the transformed volume

for the two- and three-dimensional growth processes of

Fig. 6a, b. It turns out that up to a reaction extent of 85%

the expansion parameter is lower than 0.1.

The model kinetics could also be employed for

describing the initial stage of the metal dusting. As antic-

ipated in the ‘‘Introduction’’ section, this phenomenon

involves metal surfaces in carburizing atmosphere,

containing CO and/or hydrocarbons. The initial stage of the

reaction is the diffusion of C atoms from the surface into

the metal, leading to the formation of metal–carbon solid

solution. In the specific case of iron, cementite is the

intermediate into which the subsequent growth of graphite

takes place [27]. The nucleation and growth of cementite is

therefore expected to occur under a concentration gradient

of C atoms. By assuming quasi-steady state conditions the

concentration profile of C into the metal is in accord

with the exponential decay cðxÞ � cse
�x=k, where k ¼

ffiffiffiffiffiffi
Ds
p

is the diffusion length and cs the concentration of C atoms

at the surface. The characteristic time s (life time), is the

inverse of the probability, per unit time, that a C-atom be

captured by the cementite nuclei. Accordingly, Eq. 29 can

be applied to describe the nucleation and growth of the

intermediate phase with the local quantity �r0

k ¼ 1
kacse

�X0=kt

which scales as �r0

k � D1=2t
s1=2

cs

qe�X0=k.

As far as the phase transformation in two-dimension is

concerned, it is worth quoting the experiment of diamond

growth on silicon surface, by using the ultra short bias

enhanced plasma deposition technique (USBEN) [36]. The

authors present a detailed analysis of the physical quanti-

ties which characterize the growth. In order to gain an

insight into the homogeneity of the system, cartography of

the nucleation density, surface coverage and mean island

size have been measured and show that the growth con-

ditions are not uniform throughout the surface. Therefore,

the model could be employed to compute the fractional

coverage of silicon by diamond by using both nucleation

and growth rates which depend upon position. Moreover,

the experimental data indicates that the length scale over

which the growth parameters change, is longer that the

mean nucleus size and this makes valid the first order

expansion employed in the modeling.

Fig. 9 Dynamical impingement factor for the kinetics of Fig. 6.

Panel a C2D ¼ 20 (solid line); C2D ¼ 15 (dashed line). Panel b C3D ¼
140 (dashed line); C3D ¼ 70 (long-dashed line); C3D ¼ 60 (solid line)

Fig. 10 Behavior of the parameter, 1=k0ðtÞ ¼ r0ðtÞ=k, as a function

of the local transformed fraction for the kinetics of Fig. 6. Curve (a)

C3D ¼ 140; (b) C3D ¼ 70; (c) C3D ¼ 60; (d) C2D ¼ 20; (e) C2D ¼ 15
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It is worth stressing that although the present model has

been developed in the specific case of an inhomogeneous

concentration profile, the analytical results of Eqs. 28, 29,

appear to be quite general. In fact, these kinetics hold

provided that d<
dt � e�x=k(Eq. 10, See Footnote 1.) where

this behavior can be due to either a temperature or a con-

centration gradient. The present approach can also be

employed to deal with any concentration (or temperature)

profile. In this case, however, the dependence of kðxNÞ ¼
� cðxN Þ

c0ðxN Þ on nucleus location has to be duly taken into

account in Eq. 26a.

Conclusions

A model has been developed for dealing with nucleation

and growth reactions in inhomogeneous systems. The

kinetic equation is found to resemble the KJMA formula

where the local ‘‘extended volume’’ is now a multiple

integral over the birth time of the nuclei, the time at which

the transformation of the point may occur, and the angular

variables. In the case of small degrees of inhomogeneity,

the kinetics is employed for estimating first order correc-

tions to the local KJMA kinetics. For this purpose, the case

of site saturation and interface-limited growth has been

investigated. In two-dimensional growth the shape of the

nucleus is found to be well described by a displaced circle

and this allows one to compute, analytically, the local

kinetics. The same approach has also been applied to

investigate three-dimensional growth. First order correc-

tions to the KJMA formula lead, in both two- and three-

dimensional cases, to an increase in the reaction rate. This

is highlighted through the analysis of the Avrami exponent

that is found to be greater than 2 and 3 for two- and three-

dimensional transitions, respectively. The analysis of the

impingement factor gives values that are lower than one

and approximately constant in time. These values, how-

ever, depend on the choice of the local ‘‘extended volume’’

that enters the phenomenological equation. Here, the

impingement factor is referred to the extended volume

computed in the zero-order approximation.
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